Insights of Pharmatech, Volume 1, Issue 3, (July to September) 2025, 13-15.

Available at amepurvapub.com

Integrative Ayurveda and Gut Microbiome Interventions: Toward Personalized Microbiome-Ayurveda Therapeutics

Parimal Kishor Bhandare

Parimal Pharmaceuticals, India, Maharashtra, Satara 415003.

*Corresponding author: pbhandare3@gmail.com

Received on: 21/06/2025 Accepted on: 11/08/2025 Published on: 03/10/2025

ABSTRACT

The gut microbiome is now widely recognized as a central regulator of human health, influencing digestion, immunity, metabolism, and even neurobehavioral processes through the gut-brain axis. Ayurveda, the ancient Indian medical system, has long emphasized digestion (Agni), personalized constitutions (Prakriti), and rejuvenation therapies (Rasayana) as key determinants of health and disease. In recent years, converging evidence has highlighted remarkable parallels between these traditional frameworks and microbiome science. Emerging studies suggest that Ayurvedic classifications such as Prakriti are associated with specific gut microbial signatures, while classical polyherbal formulations such as Triphala, Tinospora cordifolia (Guduchi), and Withania somnifera (Ashwagandha) exert microbiome-modulating effects in animal models and early human trials. These interventions influence microbial composition, enhance short-chain fatty acid production, and regulate host immunity, providing mechanistic support for long-standing Ayurvedic claims of systemic benefits. This review synthesizes current knowledge linking Ayurveda with microbiome science, outlines mechanistic pathways, discusses translational opportunities in metabolic, gastrointestinal, and neuropsychiatric disorders, and highlights methodological challenges. Finally, it proposes a roadmap integrating Ayurvedic wisdom with multi-omics, computational biology, and precision medicine approaches to advance personalized microbiome-Ayurveda therapeutics.

KEYWORDS: Ayurveda, , Gut Microbiome, Prakriti, Trifala

ABOUT THE AUTHOR

Mr. Parimal Bhandare, is the Founder & CEO of Parimal Pharmaceuticals, a pioneering force in evidence-based Ayurvedic healthcare. With a vision to blend traditional wisdom and modern pharmaceutical practices, he has built a nationally trusted brand known for clinically researched, ethically produced formulations. Passionate about R&D and phytopharmaceuticals, he is spearheading the integration of Artificial Intelligence with Ayurveda to advance diagnostic accuracy and personalized care. Upholding quality, safety, and social responsibility, he continues to drive Ayurvedic innovation with the mission to globalize it as a data-driven, tech-enabled therapeutic system for modern healthcare.

INTRODUCTION

Over the past decade, the gut microbiome has emerged as a critical determinant of health and disease. The human gastrointestinal tract is colonized by trillions of microbes that contribute to nutrient absorption, vitamin synthesis, immune homeostasis, and regulation of host metabolism.(1) When this delicate ecosystem is disrupted, a state known as dysbiosis arises, which has been implicated in a wide spectrum of conditions including obesity, diabetes, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), autoimmune disorders, and neuropsychiatric illnesses. Advances in sequencing technologies and metabolomics have not only revealed the diversity of the gut microbiome but also underscored its role as a therapeutic target.(2)

Interestingly, Ayurveda, a holistic system of medicine practiced for millennia in South Asia, has always placed digestion at the center of health.(3) According to Ayurvedic theory, the digestive fire (Agni) is the driver of metabolic balance, while accumulation of undigested material (Ama) leads to toxicity and disease. (4) Ayurveda further emphasizes diet (Ahara), daily routines (Dinacharya), and seasonal adaptation (Ritucharya) as essential tools for maintaining health. (5) (6)A unique contribution of Ayurveda is the concept of Prakriti — the innate constitution of an individual determined by the balance of Vata, Pitta, and Kapha. This constitutional typing guides preventive and therapeutic strategies and has been linked in modern research to genetic variations, metabolic traits, and, more recently, gut microbiome profiles.(7)

Ayurvedic formulations, particularly polyherbal combinations, are designed to act synergistically across multiple systems. These formulations are rich in fibers, polyphenols, and phytochemicals that are metabolized by gut microbes into bioactive metabolites.(8) Triphala, a widely used blend of three fruits, has been shown to enhance short-chain fatty acid (SCFA) production and beneficial microbial taxa. Guduchi (*Tinospora cordifolia*) is traditionally described as

a Rasayana with immune-strengthening properties and has been shown in modern studies to influence microbial populations. Similarly, Ashwagandha (Withania somnifera), well known for its adaptogenic effects, appears to interact with the gut-brain axis through microbiome modulation. (9)(10)

These observations suggest that Ayurveda and microbiome science converge on a shared principle: the regulation of gut ecology is fundamental to systemic health. By integrating the empirical wisdom of Ayurveda with modern microbiome research, it may be possible to develop new approaches to personalized medicine that are both culturally grounded and mechanistically robust.

AYURVEDA AND THE GUT MICROBIOME: CONCEPTUAL BRIDGES

One of the most compelling areas of convergence between Ayurveda and microbiome science is the concept of Prakriti.(11) Individuals are classified into constitution types based on physical, physiological, and psychological characteristics. Emerging evidence indicates that these constitutions may correspond to measurable differences in gut microbial communities. For example, certain bacterial taxa appear enriched in *Vata* individuals, while others dominate in *Pitta* or *Kapha* types.(12) This provides a biological substrate for Ayurveda's personalized medicine framework and suggests that constitution-specific microbiome modulation could form the basis of tailored interventions.

The Ayurvedic concept of Agni, or digestive fire, closely parallels the modern idea of metabolic capacity. A strong Agni reflects efficient digestion and nutrient assimilation, while weakened Agni leads to the accumulation of *Ama*, which can be compared to the pathological products of dysbiosis, such as lipopolysaccharides and other pro-inflammatory metabolites. This alignment provides a language to translate Ayurvedic pathophysiology into modern microbiome terms.(5)

Equally important is the notion of Rasayana, rejuvenation therapies designed to promote longevity, immunity, and resilience. Many Rasayana herbs contain polysaccharides and polyphenols that gut bacteria can metabolize into health-promoting compounds. This provides a plausible explanation for the systemic effects of Rasayanas observed in clinical and experimental settings.(13)

EVIDENCE FROM HERBAL FORMULATIONS

Several classical Ayurvedic formulations have been directly studied for their microbiome-modulating properties. Triphala, composed of Amalaki (*Emblica officinalis*), Haritaki (*Terminalia chebula*), and Bibhitaki (*Terminalia bellirica*), has been shown in animal and human studies to increase microbial diversity, enhance SCFA production, and suppress harmful species associated with dysbiosis. Clinical trials in patients with constipation and IBS suggest improvements in bowel movements and symptom severity, which correlate with microbiome shifts.(14)

Guduchi (*Tinospora cordifolia*) has been investigated for its immunomodulatory properties. Studies in animal models demonstrate increases in lactic acid bacteria and beneficial changes in gut microbial composition. These shifts may partly explain Guduchi's traditional role in enhancing immunity and resilience against infections.(15)

Ashwagandha (Withania somnifera), another Rasayana, is widely used for stress, anxiety, and cognitive decline. Recent preclinical studies suggest that Ashwagandha influences microbial populations and their metabolic activity, leading to improvements in gut-brain axis signaling. Pilot human studies hint at similar effects, though larger trials are needed.(16)

MECHANISTIC PATHWAYS

The mechanisms by which Ayurvedic herbs influence the microbiome are multifaceted. First, many herbs act as prebiotics, providing complex polysaccharides that selectively nourish beneficial microbes, resulting in increased SCFA production. SCFAs such as butyrate improve intestinal barrier integrity and regulate host metabolism.(17)

Second, gut microbes perform biotransformation of Ayurvedic phytochemicals into smaller, more bioavailable metabolites with distinct biological activities. For example, polyphenols in Triphala are metabolized into compounds with antioxidant and anti-inflammatory properties.(9)

Third, microbiome shifts induced by Ayurvedic interventions can have immune-modulating effects, altering cytokine profiles and promoting regulatory T-cell responses. This aligns with traditional descriptions of Rasayanas as immunity enhancers.(18)

Finally, there is growing interest in the gut-brain axis as a pathway through which Ayurvedic herbs influence cognition and mood. By modifying microbial metabolites such as tryptophan derivatives and neurotransmitter precursors, herbs like Ashwagandha may exert psychotropic effects.(19)

CLINICAL AND TRANSLATIONAL APPLICATIONS

The integration of Ayurveda and microbiome science has clear translational potential. In metabolic disorders, such as obesity and type 2 diabetes, Triphala and turmeric formulations have shown improvements in glycemic control and lipid metabolism, possibly mediated by microbial shifts. In functional gastro-intestinal disorders, Triphala has been used traditionally for constipation, and clinical studies confirm its efficacy while also documenting improvements in microbial diversity.(14)(9)

In the realm of neuropsychiatric health, herbs such as Ashwagandha and Brahmi are being re-examined through the lens of the gut-brain axis. Pilot studies suggest they may improve stress resilience and cognitive performance through microbiome modulation.(16)

For immune health and infection recovery, Guduchi and Amalaki are being investigated in contexts such as viral infections and long-COVID. These applications may be mediated in part by restoration of a healthy gut microbiome. (20)

CHALLENGES AND FUTURE DIRECTIONS

Despite promising findings, several challenges remain. Most *Prakriti*-microbiome studies are limited by small sample sizes and regional bias, necessitating larger, multiethnic cohorts. The standardization of Ayurvedic formulations remains inconsistent, leading to variability in outcomes. Moreover, clinical trials rarely include microbiome endpoints, making it difficult to establish causality. Future research should focus on rigorous, placebo-controlled clinical trials of standardized Ayurvedic formulations with longitudinal microbiome and metabolomic measurements. Large-scale studies linking *Prakriti* with microbiome and multi-omics data could establish robust biomarkers for personalized interventions. Additionally, integrative approaches combining Ayurvedic prebiotics with targeted probiotics creating synbiotic formulations could be explored. Finally, artificial intelligence tools could help integrate complex datasets, linking Ayurvedic phenotypes with microbiome signatures to predict therapeutic outcomes.(21)(22)

CONCLUSION

Ayurveda and microbiome science converge on a shared vision of health rooted in the regulation of gut ecology. Emerging evidence supports that Ayurvedic constructs such as *Prakriti* correspond to microbiome signatures and that classical formulations like Triphala, Guduchi, and Ashwagandha exert microbiome-modulating effects. By uniting Ayurveda's personalized, holistic approach with the analytical power of microbiome science, there is potential to create a new paradigm of precision medicine that is both culturally informed and scientifically validated. Such integrative strategies could transform the management of metabolic, gastrointestinal, neuropsychiatric, and immune disorders in the coming decades.

REFERENCES

- Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28:9–17. https://doi.org/10.1111/jgh.12294
- Yang SY, Han SM, Lee JY, Kim KS, Lee JE, Lee DW. Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives. J Microbiol Biotechnol. 2025;35:e2412001. https://doi.org/10.4014/jmb.2412.12001
- Kizhakkeveettil A, Parla J, Patwardhan K, Sharma A, Sharma S. History, Present and Prospect of Ayurveda. In: History, Present and Prospect of World Traditional Medicine. World Scientific; 2024. p. 1–72. https://doi.org/10.1142/9789811282171_0001
- Dixit A. A conceptual study on the role of Jatharagni in human digestion: An Ayurvedic Perspective. J Swasthavritta Yoga. 2025;2(1):38–41.
- Gunathilaka N. Role of Agni Siddhānta in Digestive Health and Metabolic Disorders. J Ayurvedic Maulik Siddhant. 2025;2(1):31–5. https://www.doi.org/10.33545/siddhant.2025.v2.i1.A.11
- Patil A. Investigating the Role of Ahara (Diet) in the Etiopathogenesis of Amavata: An Ayurvedic Perspective. Metall Mater Eng. 2025;31 (4):117–29. https://doi.org/10.63278/1413
- Arnold JT. Integrating ayurvedic medicine into cancer research programs part 1: Ayurveda background and applications. J Ayurveda Integr

- Med. 2023;14(2):100676. https://doi.org/10.1016/j.jaim.2022.100676
- Rahim T. Polyherbal formulations in Ayurveda and their relevance in contemporary phytotherapy. JPP. 2024;1(1):13–20. https://www.doi.org/10.33545/30810620.2024.v1.i1.A.4
- Gurjar S, Taliyan R, Kumari S, Kesharwani P. The interplay of triphala and its constituents with respect to metabolic disorders and gutmicrobiome. Fitoterapia. 2025;106642. https://doi.org/10.1016/j.fitote.2025.106642
- Pathania M, Bhardwaj P, Pathania N, Rathaur VK. A review on exploring evidence-based approach to harnessing the immune system in times of corona virus pandemic: best of modern and traditional Indian system of medicine. J Fam Med Prim care. 2020;9(8):3826–37. https://doi.org/10.4103/jfmpe.jfmpe.504.20
- Jnana A, Murali TS, Guruprasad KP, Satyamoorthy K. Prakriti phenotypes as a stratifier of gut microbiome: A new frontier in personalized medicine?
 J Ayurveda Integr Med. 2020;11(3):360–5. https://doi.org/10.1016/j.jaim.2020.05.013
- Bhatt B, Patel K, Lee CN, Moochhala S. Microbiome & Ayurveda: A Synergistic Approach to Human Wellness. Partridge Publishing Singapore; 2025.
- Yadav P. An An Analytical Study on the Methodical Scrutiny of Ayurveda's Trajectory Towards Longevity and Youthful Vitality Using Rasayana Therapy. J Intern Med Pharmacol. 2025;2(01):48–61. https://doi.org/10.61920/jimp.v2i01.39
- Bairwa VK, Kashyap AK, Meena P, Jain BP. Triphala's characteristics and potential therapeutic uses in modern health. Int J Physiol Pathophysiol Pharmacol. 2025;17(2):19. https://doi.org/10.62347/OBSS5026

- Yates CR, Bruno EJ, Yates MED. Tinospora Cordifolia: A review of its immunomodulatory properties. J Diet Suppl. 2022;19(2):271–85. https://doi.org/10.1080/19390211.2021.1873214
- Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha:
 a Rasayana (rejuvenator) of Ayurveda. African J Tradit Complement Altern Med. 2011;8(5S). https://doi.org/10.4314/ajtcam.v8i5S.9
- Feng W, Ao H, Peng C. Gut microbiota, short-chain fatty acids, and herbal medicines. Front Pharmacol. 2018;9:1354. https://doi.org/10.3389/fphar.2018.01354
- Chitara D, Verma A, Kumar P, Sidhu VK. Nutraceuticals and Human Health. In: The Nature of Nutraceuticals. Apple Academic Press; 2025. p. 33–72. https://doi.org/10.1201/9781003518969-3
- Muralidhara M. Propensity of ayurvedic herbs as potential modulators of gut microbiome (GM): implications in neurological disorders. In: Ayurvedic Herbal Preparations in Neurological Disorders. Elsevier; 2023. p. 275–302. https://doi.org/10.1016/B978-0-443-19084-1.00015-6
- Raghavan N. Ayurveda and Naturopathy Approaches for Enhancing Immunity in Post-COVID-19 Recovery. J Ayurveda Naturop. 2025;2 (1):31–7. https://www.doi.org/10.33545/ayurveda.2025.v2.i1.A.14
- Wallace RK. The microbiome in health and disease from the perspective of modern medicine and ayurveda. Medicina (B Aires). 2020;56(9):462. https://doi.org/10.3390/medicina56090462
- Mobeen F, Sharma V, Prakash T. Functional signature analysis of extreme Prakriti endophenotypes in gut microbiome of western Indian rural population. Bioinformation. 2019;15(7):490. https://doi.org/10.6026/97320630015490