Insights of Pharmatech, Volume 1, Issue 3, (July to September) 2025, 10-12.

Available at amepurvapub.com

FHIR as the Catalyst for Accelerating Data-to-Insight in Healthcare Somnath Narayan Mahale

Independent Data & AI Consultant, Pune, 411015.

*Corresponding author: somnath.mahale@gmail.com

Received on: 30/05/2025 Accepted on: 03/08/2025 Published on: 03/10/2025

ABSTRACT

Healthcare data is often locked in silos spread across electronic health records (EHRs), registries, laboratories, and claims systems. This lack of interoperability slows down patient care, complicates compliance, and makes it difficult to generate timely insights. The Fast Healthcare Interoperability Resources (FHIR) standard, when combined with cloud-native data architectures, provides a path to unify these datasets into formats that are both auditable and analytics-ready. This paper examines how FHIR accelerates the data-to-insight cycle, drawing on practical implementations in the United States where registry onboarding times dropped from weeks to days, dashboards refreshed in under two seconds, and compliance audits passed with zero critical findings. Beyond technical efficiency, these systems supported preventive screening, immunization tracking, and machine-learning models for predictive care. The analysis also reflects on India's Ayushman Bharat Digital Mission (ABDM) and National Health Claim Exchange (NHCX), where FHIR is being adopted at national scale. Together, these experiences suggest that FHIR can serve as the foundation for more interoperable, intelligent, and patient-centric healthcare systems worldwide.

KEYWORDS: FHIR, Interoperable Health Records, Clinical Data Repository, Digital Health, ABDM, NHCX

ABOUT THE AUTHOR

Somnath is a Data and AI strategist with more than 18 years of global experience driving digital transformation and business growth. He specializes in data engineering, Artificial Intelligence, and cloud modernization helping organizations harness technology to create measurable impact and competitive advantage. Beyond executive consulting, Somnath contributes actively to the Data & AI ecosystem through published research, peer reviews, and patents. He is also a recognized voice in thought leadership—regularly writing on articles on media. Leading professional development workshops—empowering educators, professionals, and the next generation of engineers to thrive in a data-driven future.

INTRODUCTION

Healthcare systems everywhere wrestle with the same stubborn problem: data is fragmented. Patient records live in different silos EHRs, registries, lab systems, and insurance claims—making it difficult to form a single, trustworthy view of care. This fragmentation slows down clinical decisions, complicates regulatory reporting, and limits the potential of advanced analytics. (1,2)

In the U.S., one of the most effective responses to this challenge has been the adoption of FHIR (Fast Healthcare Interoperability Resources), a global standard that defines how healthcare data can be exchanged in a consistent and structured way. In practice, it became the bridge that unified messy, heterogeneous datasets into a clinical data repository that was both analytics-ready and compliant. This allowed us to onboard registries in days instead of weeks, deliver real-time scorecards and quality dashboards quickly, and support clinical measures with confidence and transparency. Just as importantly, it enabled the creation of curated datasets for AI models all while passing HIPAA audits without critical findings.(3–5)

This experience is not just an American story. India is actively adopting FHIR as the backbone of its digital health ecosystem through initiatives like the Ayushman Bharat Digital Mission (ABDM) and the National Health Claim Exchange (NHCX). ABDM aims to provide every citizen with a longitudinal health record, while NHCX applies interoperability standards to streamline claims.(6,7) The lessons learned in U.S. implementations — configurable ingestion pipelines, data platform, validation workflows, governance-first architecture — directly map to these Indian initiatives, where FHIR will play a central role in creating a digital public good for healthcare. (6)

This article shares practical insights from U.S. healthcare implementations and connects them to India's digital health journey, highlighting how FHIR is evolving from a technical standard into a catalyst for healthcare intelligence.

FHIR IN ACTION: FROM STANDARD TO ENABLER

At its core, FHIR provides a structured set of resources Patient, Encounter, Observation, Immunization, Condition, Medication, among others that reflect real-world clinical and administrative concepts. In practice, data arrives from many formats (HL7 feeds, PDF-based discharge summaries, CSV claims files, or even legacy databases). Using FHIR, these heterogeneous inputs can be mapped into a consistent patient-centric model.(8)

Mapping & Normalization: Patient demographics became FHIR Patient resources, encounters mapped to Encounter, lab results to Observation, and so on

Validation: We applied schema checks using HAPI FHIR libraries, quarantining invalid records for remediation without breaking the pipeline.

Storage: Canonical FHIR JSONs were stored in cloud repositories, while structured equivalents were extracted into BigQuery for analysis.

APIs: RESTful FHIR endpoints exposed via Kubernetes (GKE) allowed downstream applications reporting systems, payors, quality registries to consume standardized bundles on demand.(9)

This type of FHIR-native approach is directly applicable in India, where ABDM is linking hospitals, labs, pharmacies, and insurers under a single health data exchange framework. To transform disparate inputs into a single patient-centric data model that could support compliance reporting, clinical workflows, and predictive analytics is one of the foundational goals of national -scale systems.(6)

Preventive Screening Measure

MIPS is a US-based program. MIPS #39 is a quality measure that assesses screening for osteoporosis in women aged 65–85 years in the U.S.(10) The same principle applies in India under population health initiatives focusing on preventive screening for conditions like anemia in women, hypertension, or diabetes management under Ayushman Bharat schemes.

With FHIR, preventive screening measures can be calculated consistently:

Patient → identify eligible population (e.g. women of reproductive age for anemia, adults 30+ for hypertension)

Encounter → confirm that a patient visited a hospital, PHC, or health camp

Observation → check for diagnostic results (e.g. Hb count for anemia, BP readings for hypertension)

Because data is normalized into FHIR, these checks remain consistent whether the data originated in an urban tertiary hospital, a rural health camp, or a diagnostic lab and result in not only accurate reporting but also a fully auditable trail during compliance reviews.(4,11)

Immunization Tracking

A parallel can be drawn from flu vaccination tracking in the U.S. to India's **Universal Immunization Programme (UIP)**.(12) Vaccination data often exists across EHRs, state immunization registries, and claims. Using FHIR:

Patient demographics identify eligible children or adults

Immunization resources capture details such as vaccine type (BCG, polio, measles, COVID-19)

Condition resources highlight risk factors like comorbidities

Claims data for vaccines under insurance or government schemes can also be normalized into FHIR

This unified FHIR-native view of immunizations enables better compliance tracking, targeted outreach, and reduces duplicate reporting burdens for providers. Care teams could target at-risk patients while the same standardized data powered both regulatory reporting and clinical dashboards. It also supports the ABDM vision of a **Digital Health ID** linked to a person's complete immunization history.(13)

Implications

The impact of FHIR goes beyond compliance. For clinicians, it ensures a consistent, reusable logic for quality measures, simplifies integration, and makes healthcare data reusable across contexts. For data scientists, it provides structured, analytics-ready datasets to train predictive models. For regulators, it offers transparency and auditability. And for pharmatech, it opens opportunities to integrate real-world evidence, therapeutic monitoring, and population health insights into drug discovery and development.(14)

For Healthcare

India's ABDM and NHCX initiatives stand to benefit significantly —

Public health authorities can measure outcomes across programs like Ayushman Bharat and UIP.

Insurers and NHCX can streamline claims by adopting FHIR resources for Coverage, Claim, and Explanation f Benefit.

FOR PHARMATECH

Real-World Evidence for Drug Safety and Efficacy

FHIR-standardized patient data (conditions, medications, observations, adverse events) makes it easier to generate RWE, monitor post-marketing safety, identify rare adverse events, and accelerate pharmacovigilance.

Streamlined Clinical Trials and Recruitment

Patient-centric FHIR repositories allow researchers to identify eligible participants by demographics, conditions, and lab results without manual screening. In India, ABDM-linked records could help improve trial diversity, reduce duplication, and speed recruitment.

Therapeutic Monitoring and Precision Medicine

With FHIR APIs, longitudinal data can flow from EHRs, labs, and even wearables into pharma analytics platforms. This enables

continuous monitoring of treatment outcomes, supports formulation optimization, and drives precision medicine strategies.

By adopting FHIR at scale, we can leapfrog integration hurdles and build a national health data infrastructure that is not only interoperable but innovation -ready.(9,15)

Reflecting on Adoption Pathways

Compared to the U.S., where FHIR adoption was driven by strong regulatory mandates and years of incremental interoperability work, India's journey is more recent but strategic. With the Ayushman Bharat Digital Mission and NHCX, India has embedded FHIR directly into its national health architecture. While adoption today is still uneven more mature in urban hospitals and early pilots the foundation is strong. By building digital public goods and consent-driven exchanges from the outset, India has the opportunity to leapfrog traditional challenges and scale interoperability nationwide faster than the U.S. did. (15)

CONCLUSION

For me, working with FHIR was never just about meeting a regulatory standard. It was about bridging messy healthcare data into usable patient intelligence, enabling everything from quality reporting to advanced AI models. We unified complex, fragmented systems, accelerating the journey from data to actionable insight. The U.S. experience shows what is possible when FHIR is applied thoughtfully; India's digital health journey demonstrates how these ideas can scale to a nation. Together, they point to a future where healthcare data is not a barrier but a foundation for better care, interoperability, smarter research, compliance, and faster innovation.

REFERENCES

- Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Heal Inf Sci Syst. 2014;2(1):3. https://doi.org/10.1186/2047-2501-2-3
- Haux R. Health information systems—past, present, future. Int J Med Inform. 2006;75(3–4):268–81. https://doi.org/10.1016/j.ijmedinf.2005.08.002
- Chintoh GA, Segun-Falade OD, Somtochukwu C, Odionu AHE. Developing Ethical AI Models in Healthcare: A US Legal and Compliance Perspective on HIPAA and CCPA. https://doi.org/10.56201/ijhpr.vol.10.no2.2025.pg10.26
- Ayaz M, Pasha MF, Alzahrani MY, Budiarto R, Stiawan D. The Fast Health Interoperability Resources (FHIR) standard: systematic literature review of implementations, applications, challenges and opportunities. JMIR Med informatics. 2021;9(7):e21929. https:// doi.org/10.2196/21929
- Paulson D, Cannon B. Auditing and Logging Systems for Privacy Assurance in Medical AI Pipelines. 2025; (Preprints.org) https://doi.org/10.20944/preprints202506.1209.v1
- Sharma RS, Rohatgi A, Jain S, Singh D. The Ayushman Bharat Digital Mission (ABDM): making of India's digital health story. CSI Trans ICT. 2023;11(1):3–9. https://doi.org/10.1007/s40012-023-00375-0
- Singh R, Raj RS, Radha. Ensuring Health for All: Examining the Role
 of Digital Health in India. In: Intersecting Realities of Health Resilience and Governance in India: Emerging Domestic and Global Perspectives. Springer; 2025. p. 201–27. https://doi.org/10.1007/978-98197-9096-8 11
- HL7 International [Internet]. 2023 [retrieved on 2025 Sep 23]. FHIR
 Release 4 Specification. Available from: https://hl7.org/fhir/ (Accessed on 25 September 2025)

- Hong N, Wen A, Shen F, Sohn S, Wang C, Liu H, et al. Developing a scalable FHIR-based clinical data normalization pipeline for standardizing and integrating unstructured and structured electronic health record data. JAMIA open. 2019;2(4):570–9. https://doi.org/10.1093/jamiaopen/ooz056
- McNally SM. Improving Health Prevention Screening in a Rural Health Clinic. 2023; (https://scholarworks.gvsu.edu/gradprojects/307/) Accessed on 25 September 2025)
- Hong J, Morris P, Seo J. Interconnected personal health record ecosystem using IoT cloud platform and HL7 FHIR. In: 2017 IEEE international conference on healthcare informatics (ICHI). IEEE; 2017. p. 362
 -7. https://doi.org/10.1109/ICHI.2017.82
- 12. Kumar P, Chakraborty AB, Dhandore S, Dhalaria P, Singh AK,

- Agarwal D, et al. Balancing routine and pandemic: the synergy of India's Universal Immunization Program and COVID-19 Vaccination Program. Vaccines. 2023;11(12):1776. https://doi.org/10.3390/vaccines11121776
- 13. Benson T, Grieve G. Principles of health interoperability: SNOMED CT, HL7 and FHIR. Vol. 3. Springer; 2016. https://doi.org/10.1007/978-3-319-30370-3
- Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J Am Med Informatics Assoc. 2016;23(5):899–908. https://doi.org/10.1093/jamia/ocv189
- 15. Salunkhe V. Transforming healthcare research with interoperability: The role of FHIR and SMART on FHIR. In: Healthcare Administration and Managerial Training in the 21st Century. IGI Global; 2024. p. 211–